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Abstract. We reconsider the results concerning the extreme-quanhlm S = 112 squadatlice 
Heisenberg antifemmagnet with frustrating diagonal couplings (the Ji-& model) drawn iiom 
a comparison with exact-diagonalization data. A combined approach, also using some intrinsic 
feature;, of the selfconsistent spin-wave theory, leads to the conclusion lhat the theory strongly 
overestimates the stabilizing role of quantum fluctuations with respect to the Ned phase in 
the exheme-quantum case S = 112. On the other hand, the analysis implies lhat the N&l 
phase remains stable al least up to the limit h / J j  = 0.49, which is larger than some previous 
estimates. In addition. it is argued that the spin-wave ansatz predicts the existence of a finite 
range (Jz ~ J I  c 0.323 in linear spin-wave theory) where the Marshal-Peierls sign rule survives 
the frustrations. 

1. Intmduction 

The square-lattice Heisenberg antiferromagnet with antiferromagnetic next-nearest- 
neighbour couplings (the JI-JZ model) produces a simple and, at the same time, important 
example of a frustrated quantum spin system. The model is defined by the Hamiltonian 

where the symbols (i, j )  and [i. j ]  mean that the summations mn over the nearest-neighbour 
and next-nearest-neighbour (diagonal) bonds, respectively. In what follows we put 51 = 1, 
CY = Jz /J , .  

At the moment. little is known about the ground-state properties of this model. In 
the classical limit S = 00 the Jt-Jz model has two phases: if 01 c 112 the ground state 
is a two-sublattice Nee1 state, whereas if 01 =- 112, the four-sublattice antiferromagnetic 
state is stable. At the classical transition point LY = 112 the model is characterized by 
a large degree of classical degeneracy: all states with zero elementary-plaquette spins are 
energetically preferable. Quantum fluctuations, however, can drastically change this picture. 
In general, they are determined by the microscopic structure of the model, and are expected 
to increase as S approaches the extremequantum limit S = 112, andlor the frustration 
becomes stronger. A simple linear spin-wave analysis already reveals such a tendency [l]. 
In addition, the latter theory predicts the existence of a finite range around the classical phase 
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boundary a = 1/2 where the classical long-range magnetic order is completely destroyed 
(for arbitrary S ) .  However, the next-order terms in the large4 expansion show logarithmic 
divergences 121 connected to an additional softening of the spectrum at a = 1/2, thus 
making the first-order predictions at least questionable. This situation is characteristic of 
most of the studied frustrated models. An open question is how to reconstruct the standard 
spin-wave expansion in order to avoid the mentioned difficulties. The Hamee-Fock-type 
theories [2-41, which could in principle serve as a starting point for a systematic expansion, 
predict a first-order phase transition between the magnetically ordered phases without any 
intermediate phase. This picture is connected with the predicted stabilizing role of quantum 
fluctuations with respect to the two-sublattice Nee1 order. Presently, however, it is not clear 
if these conclusions are also characteristic, at least qualitatively, for the extremequantum 
system S = 112. 

Concerning the S = 1/2 case, at least two important issues, related to the ground-state 
phase diagram, remain unsettled: (i) the nature of the magnetically disordered phase, if 
any, in the strongly frustrated region, and (U) the location of the phase-transition boundary. 
The magnetically disordered spin-Peierls dimer state is preferable in a number of studies: 
(a) series expansions around dimer states [5], (b) the 1 / N  expansion technique [ 6 ] ,  (c) 
bond-operator techniques [7], (d) effectiveaction approaches leading to quantum non-linear 
u-models [SI, and (e) numerical exactdiagonalization data 19, IO]. However, each of the 
mentioned methods has its own defects, so that some other states (for example the chiral 
states [1&12]) seem to be possible candidates, as well. 

With regard to the location of phase boundary, here the estimates are in the large 
interval from a. M 0.15 to ac c 0.6. The lower bound a, M 0.15 was obtained [I31 
by use of a-model considerations combined with Schwinger-boson mean-field results for 
S = 1/2 On the other hand, the largest estimate a, M 0.6 is characteristic of self-consistent 
theories [2-4]. A series of studies give values which are near the point a, = 0.4 [ 1,9, lo]. 

The outlined ambiguity signals of a lack of reliable descriptions even in the weakly 
frustrated region where the two-sublattice NCel phase is expected to be stable. Concerning 
the spin-wave theories, a way to test their quality gives the comparison with numerical 
exact-diagonalization data. For the J I - J ~  model, the first steps in this direction were made 
by Hirsch and Tang [I41 based on Takahashi’s idea [I51 for a constrained spin-wave theory 
in low dimensions. These authors indicated that their theory systematically overestimates 
the effect of frustration in destroying the antiferromagnetic correlations ( N  = 10.16,26). 
Recently, Ceccatto and co-workers [16] have continued this line by use of Takahashi’s 
self-consistent approach [I71 adapted to the frustrated model [4]. A remarkable agreement 
with the exact results for a number of lattices ( N  = 10,20,26) was indicated, excluding, 
however, the most symmetrical lattice 4 x 4. 

In this paper we study the extreme-quantum system S = l j 2  and show that the existing 
exact-diagonalization results, in combination with some intrinsic properties of the self- 
consistent theory, lead to the following conclusions. (i) The classical N6el state is stable 
at least up to the limit a’ = 0.49. Notice that the estimate is larger than the result 
a 0.4 mentioned above. (ii) The self-consistent spin-wave theory overestimates the 
role of quantum fluctuations in stabilizing the NCel state. This last conclusion also differs 
from previous considerations relying on a comparison with exact-diagonalization results for 
less symmetrical lattices N = 10,20,26 when the theory indeed gives excellent results. 

N B Ivanov and J Richter 
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2. Comparison of the theory with exact-diagonalination data 

2.1. Fitting to the exact-diagonalization results: N = 16 lattice 

In reconsidering the previous exact-diagonalization data, it is easy to see a well-pronounced 
tendency, i.e. the self-consistent spin-wave theory gives good correlators for a number of 
less-symmetrical lattices ( N  = 10,20,26), whereas the most symmetrical 4 x 4  lattice is not 
part of this tendency. On the other hand, the Hirsch-Tang theory overestimates the effect 
of frustration for all lattices (including the 4 x 4 lattice). In order to further check these 
observations, we present here new exact-diagonalization results for N = 18 and N = 24 
(6 x 4) lattices (figures 1 and 2). The lattice N = 18, belonging to the class of lattices 
N = IO, U). 26, is expected to suppress more symmetrical fluctuations, including the four- 
sublattice state fluctuations (because N/2 = 9 is odd), whereas the 6 x 4 lattice is rather 
closer to the 4 x 4 lattice. It is seen that the tendency is conserved: for the N = 18 
site lattice the self-consistent theory practically reproduces the exact data up to (Y 0.4, 
whereas for the N = 24 lattice it evidently underestimates the role of frustrations starting 
from 01 = 0. On the other hand, the Hirsch-Tang consideration [14], which does not take 
into account spin-wave interactions, predicts less sublattice magnetizations (figure 1) in both 
kind of lattices. Notice that the latter theory leads to completely wrong correlators (they 
are not presented in figure 2) for the discussed lattices. Therefore, we suggest that the 
symmetrical lattices N = 16,24 reproduce in a more adequate way the main properties of 
the thermodynamic limit. 
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Figure 1. The square of sublattice magnetiladon Figure 2. Spin-spin correlators (SOSR) ( R  = w i t  
against a for N = 18 and N = 24 laltices. The me) for the N = 18 lattice in the self-mnsistent theory. 
U = 1 (U,) c w e  mrresponds to the Hirsch-Tang The respective U = 1 cumes, which are not drawn here, 
(self-consistent) theory. The points are the exact- are very poor. The points are the exact-diagonalization 
diagonalization data. data. 

In what follows we address the most symmetrical 4 x 4 lattice. The scaling parameter 
U = f / g  (see [4]) appears in the self-consistent spin-wave theory through a Harkee-Fock 
decoupling of the quartic terms in the Hamiltonian. Within the theory, U is given by the 
self-consistent equations. In principle, one can use U as a variational parameter in the 
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spin-wave ansatz 

N B Ivanov and J Richter 

Here INkel) is the classical Ndel state. The weight factors W k  are defined by w k  = U k / U k ,  

uk and Uk being the well known Bogoliubov coefficients; P is a projection operator, and 
the prime means that the sum runs over the small Brillouin zone. This variational state 
is studied in [19]. Here we treat U as a fitting parameter obtained from a requirement 
for best fitting between the sublattice magnetization M:, as obtained from the theory, and 
the exact-diagonalization results. The reasoning for such a consideration comes from the 
following observations. 

(i) From Takahashi's condition (S,) = 0, when applied in the limit N = bo, one can 
directly deduce the following scaling relation connecting the sublattice magnetizations in 
the linear spin-wave approximation mo(or) (when U = 1) and in the self-consistent theory 
m(or): 

m(or) = mo(aU) N = 03. (3) 

It is interesting to notice that the above scaling relation does not explicitly depend on the 
site spin S (apart from a trivial linear term). The implicit dependence is hidden in the 
scaling factor U ,  which for or = 0 is 

1 - 0.102/2s + 0[(2s)-21 
U =  N = O 3 .  

1 + 0.158/25 + O[(2S)-2] (4) 

For S = 1/2 one gets U = 0.775. The next-order term slightly diminishes the latter number. 
The self-consistent theory predicts a monotonic decrease of U against 01 in the whole range 
where the classical Ntel state is stable (U 0.6 at the phase transition point orc E;: 0.62). 
If one takes the self-consistent theory as a starting point for a systematic perturbation 
expansion, one can hardly expect any drastic qualitative change in the behaviour of U 
against 01. The arguments are as follows. First, in this approximation the unphysical modes 
due to the degeneracy of the classical ground state at or = 1/2 acquire gaps, so that some 
of the problems concerning the standard spin-wave approach here are resolved. Second, the 
denominator in (4) is just the rescaling factor of the spin-wave velocity, which is expected 
(from other methods as well) to be slightly or-dependent and finite at the phase boundary. 

(ii) A direct calculation of the scaling factor U for N = bo and N = 16 gives practically 
the same function Cl(01). In other words, the N = 16 lattice is large enough in respect to 
this quantity, as is expected, because the factor U is a ratio of two short-ranged bosonic 
comelators. This observation will be used to obtain information concerning the N = 03 

system. The results coming from an exact fitting of the theoretical and exact-diagonalization 
functions M.' are as follows. Fist, the resulting scaling factor U is approximately 01- 

independent with a value close to the one predicted by (4). Second, one sees a remarkable fit 
to the exact comelators (figure 3) practically in the whole interval up tool E;: 0.45. The misfit 
for 01 t 0.45 is easily indicated in the ground-state energy because the small overestimates 
for the short-range correlators, noticed in figure 3(a), are summed. Nevertheless, we have 
checked that the energy is approximately unchanged by the fitting up to a F3 0.45. 

Based on the argument (ii) and the suggestion that the N = 16 lattice better reflects the 
N = bo limit (as compared to less symmetrical lattices), one can predict the same picture 
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Figure 3. The correlators (SOSR) (R = n i t  mc)  for the N = 16 lattice. The full curves are 
the results of the fitting. The other notations are h e  Same as in figures 1 and 2. 

in the thermodynamic limit: namely, the monotonic decrease in the scaling factor U against 
a should become smoother (as it is for N = 16) in a more refined approximation starting 
from the discussed self-consistent theory. In particular, the phase boundary a, w 0.62 
should drastically move towards smaller a (because U against a is approximately constant 
according to the N = 16 fitting). The last two equations, combined with the hypothesis for 
a smooth decrease of the scaling factor U against a, give the following lowest limit where 
the N6el phase becomes unstable: a' z 0.49, S = l/2. As a matter of fact, this estimate 
can be slightly increased if one takes the next-order approximation in (2). 

To summarize, a combined approach relying on a comparison with exact-diagonalization 
data and some intrinsic features of the self-consistent spin-wave theory (the scaling relation 
(3), the smooth monotonic decrease of U@), and the short-range character of the scaling 
factor U) lead to the conclusion that the theory, when applied to the extreme-quantum 
system S = 1/2, overestimates the stabilizing role of quantum fluctuations. In addition, the 
same analysis predicts a lowest limit a' = 0.49 where the Niel state is destroyed, which is 
larger than the previous estimate a 0.4 based on linear spin-wave theory [I ,  141 and on 
the N = 36 exact-diagonalization results [lo]. 

Further understanding of the features of the self-consistent approximation can be 
obtained from the spin ansatz (2). Here we address the square of the sublattice magnetization 
M," (figure 4). The exact MZ is compared to: (i) self-consistent theory; (ii) U = 1, i.e. 
linear theory; and (iii) the ansatz qlp. equation (2) with U = 1. It is obvious that the 
function M," (calculated with the ansatz @ljz ,  U = 1) strictly follows the form of the exact 
function M,"(a) in a large region up to a = 0.5. The main difference between the theory 
and @s for U = 1 lies in the fact that the variational function does not contain unphysical 
states. Therefore, the increasing misfit in M," (and in the other correlators in the Hirsch- 
Tang theory) is predominantly connected with the enhanced role of the unphysical bosonic 
states in the frustrated system (notice that already the linear spin-wave approximation in the 
pure a = 0 system gives a good estimate for the reduced site spin mo = 0.303). 

2.2. Kolation of the Marshall-Peierls sign rule 

Recent exact numerical diagonalization studies of small lattices [I91 show that the ground- 
state wavefunction of the S = 1/2 J1-Jz model violates the Marshall-Peierls sign rule for 
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Figure 4. The square of sublattice magnetization 
against 01 for ule N = 16 lattice. The c w e s  1 and 2 
represent Ihe spin-wave results for U = 1 and U=,,, 
respectively. The curve 3 is calculated with the spin- 
wave msatz (2) for S = 112. The points are the exact- 
diagonalization results. 

Figure 5. The pairing function w ( 6  t 29). as defined 
by (7). against a. U = I ;  w(i t 26) vanishes at 
O ~ M  = 0.323 for (I = 1 in the thermodynamic limit 
N = CO. 

sufficiently large a. Here we present results which are based on the spin-wave ansatz (2). 
Originally, the above-mentioned rule had been proved for bipartite lattices with nearest- 
neighbour interactions [20]. The latter says that the ground-state wavefunction of S = 1/2 
Heisenberg antiferromagnet is 

where In) is an Ising state, p .  being the number of, say, up-spins living on, say, the 
A-sublattice. Notice that the proof does not work for a system with antiferromagnetic 
next-nearest-neighbour (diagonal) couplings. As a matter of fact, this rule is violated, as 
mentioned above, in the 4 x 4 lattice provided the frustration is strong enough. 

First, let us rewrite the spin-wave ansatz (2) in the form 

@I/Z - n(1 - w(r)s$;;,,)lNW 
RI 
Rtl 

where the pairing function w ( r )  is defined by 

The vector T in (6) and (7) connects sites tiom different sublattices. 
From the structure of the ansatz it is clear that the sign rule breaks if, and only if, the 

pairing function W ( T )  changes its sign for some vector r connecting two spins which live on 
different sublattices. For the 4 x 4 lattice this is just the vector r = B 4- 25 (and the related 
by symmetry vectors on the lattice). The pairing function w ( $ +  26) against 01 is presented 
in figure 5. For U = 1, tu($ + 25) changes sign at a point practically coinciding with the 
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Figure 6. The weight of Marshall states 
against a. The curves 1 and 2 conespond 
to U = I and U,. and are calculated with 
$qn. equation (7). The cume 3 represents 
the exact-diagonalization wults, N = 16. 

related N = 00 limit, ay = 0.323 (this is another indication that this symmetrical lattice 
covers quite well some characteristic features of the infinite system). This characteristic 
point precedes the instability point a'. These observations were based on the spin-wave 
ansatz (2). The predicted weight of Marshall states (Ising states fulfilling the rule) against 01 

is in agreement with the exact result presented in figure 6. Quite surprisingly, a recent study 
of the same problem for ground states with larger total-spin quantum numbers, S,,,l = 1.2 
and 3 [21] indicates a sharp increase of the weight of non-Marshall states near the point 
a % 0.52, which is pretty close to limit 0.49 found in the present workt. 

3. Concluding remarks 

The analysis presented above was based on a combined approach using exact-diagonalization 
data for small lattices and some intrinsic features of self-consistent spin-wave theory. It 
was directed towards checking the predictions of the latter theory for the extreme-quantum 
system S = 1/2. It was found that the theory fits excellently to the exact data for less 
symmetrical clusters ( N  = 10,18,20,26), whereas for N = 16 (and also N = 24) this 
approach evidently underestimates the effect of the frustrations. At the same time, the 
Hirsch-Tang theory, which does not take into account spin-wave interactions, systematically 
overestimates the role of the frustrations for each of the mentioned lattices. This tendency 
probably means that more symmetrical (e.g. 4-spin) correlations, which are suppressed in 
less-symmetrical lattices, are not properly taken into account in the self-consistent approach. 
That is why the main conclusions are drawn from a comparison with the N = 16 lattice, 
which is suggested to better reproduce the properties of the N = w model. The comparison 
gives an estimate a* > 0.49 for the location of the instability point a*, which is higher 
than some previous results [ I , &  IO]. The analysis also shows that in a more refined 
approximation, using as a starting point the discussed theory, E* should move towards 

t After the present paper was submitted for publication we received a preprint [22] where the sane problem is 
analysed by an expansion for which the Takahashi approximation appears as a zeroth order. Our conclusions. 
drawn from the exact-diagonalization results and more intuitive considerations. seem to be in excellent agreement 
with the preprint mentioned above where it is found that a* 2 0.52 (the collinear state is found to lose stability 
at a 2 0.57). 
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smaller values of 01 (in fact, the fitting based on the N = 16 lattice predicts an approximately 
constant rescaling factor U up to the phase boundary, which would mean, if applied to the 
N = 03 system, that the instability of the N&l phase should be close to the estimate 
0.49. Clearly, one needs some additional arguments in favour of such a suggestion (see, 
for example, [22]). Finally, it was shown that the spin-wave projected ansaa predicts a 
finite region ( 01 0.323 in linear spin-wave theory) where the Marshall-Peierls sign rule 
is fulfilled in the frustrated N = 03 model. For N = 16, this result was shown to be in 
accord with the exact-diagonalization data. 

N B Ivanov and J Richter 
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